

Background & Motivation

What is Dataset Distillation?

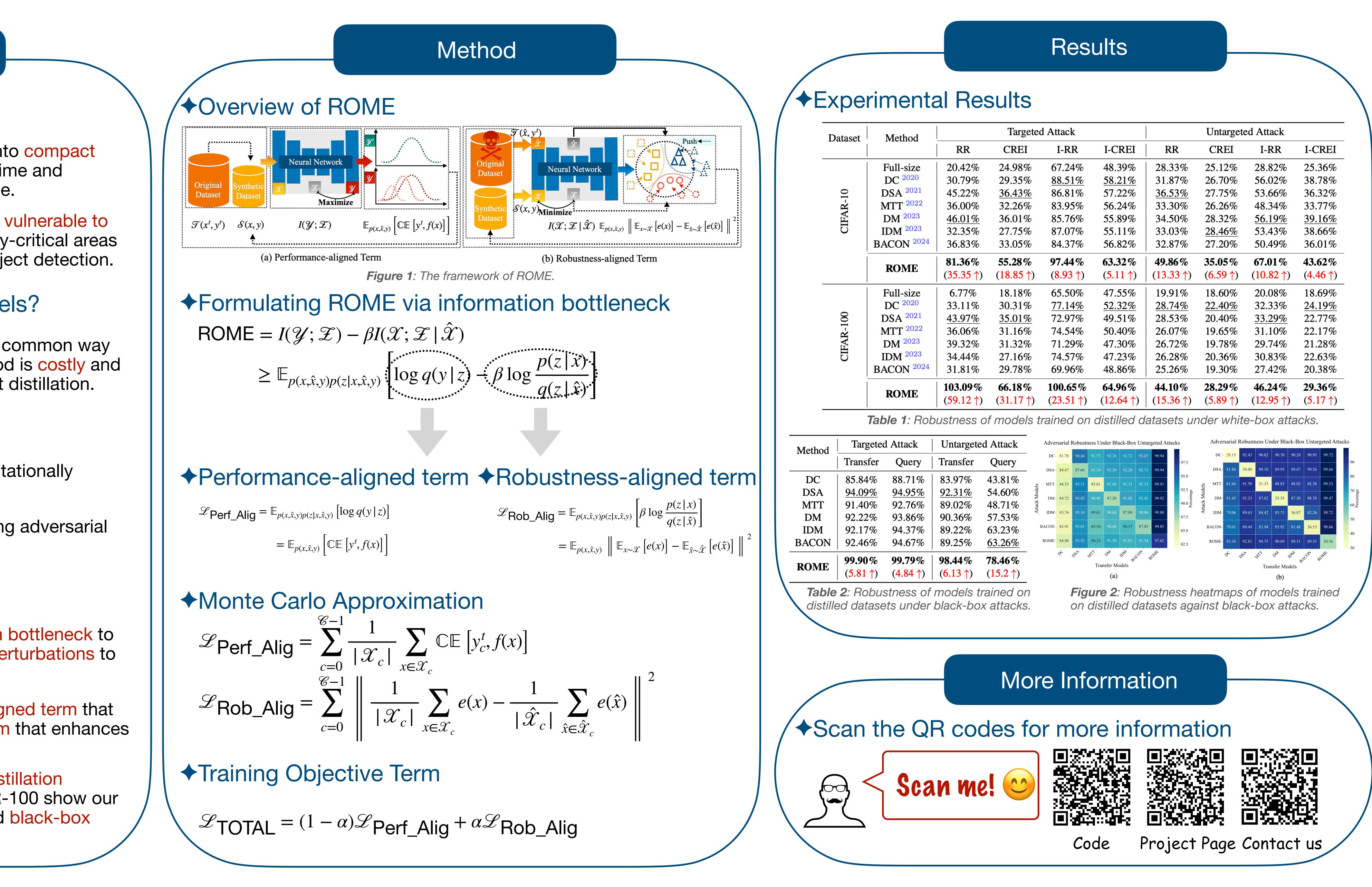
- Dataset distillation compresses large datasets into compact synthetic subsets, significantly reducing training time and computation while maintaining model performance.
- Most dataset distillation methods are efficient but vulnerable to adversarial attacks, limiting their reliability in safety-critical areas like face recognition, autonomous driving, and object detection.

✦How to enhance the robustness of models?

Adversarial robustness is a key research focus. A common way to improve it is adversarial training, but this method is costly and hard to apply in data-efficient settings like dataset distillation.

Existing challenges

- High retraining cost, making the process computationally expensive.
- Robustness-accuracy trade-off, where improving adversarial robustness often reduces clean accuracy.


Contributions

- We propose ROME, which applies the information bottleneck to dataset distillation and incorporates adversarial perturbations to create robust distilled datasets.
- We present two training terms: a performance-aligned term that preserves accuracy and a robustness-aligned term that enhances adversarial robustness.
- We introduce I-RR, a refined metric for dataset distillation robustness. Experiments on CIFAR-10 and CIFAR-100 show our method outperforms others in both white-box and black-box attacks.

Zheng Zhou¹, Wenquan Feng¹, Qiaosheng Zhang^{2,3}, Shuchang Lyu^{1,*}, Qi Zhao¹, Guangliang Cheng⁴

¹Beihang University, ²Shanghai Artificial Intelligence Laboratory, ³Shanghai Innovation Institute, ⁴University of Liverpool (*Corresponding Author)

ROME is Forged in Adversity: RObust Distilled Datasets via InforMation BottlenEck

							-	
	Targeted Attack				Untargeted Attack			
	RR	CREI	I-RR	I-CREI	RR	CREI	I-RR	I-CREI
;	20.42%	24.98%	67.24%	48.39%	28.33%	25.12%	28.82%	25.36%
	30.79%	29.35%	<u>88.51%</u>	<u>58.21%</u>	31.87%	26.70%	56.02%	38.78%
1	45.22%	36.43%	86.81%	57.22%	36.53%	27.75%	53.66%	36.32%
2	36.00%	32.26%	83.95%	56.24%	33.30%	26.26%	48.34%	33.77%
	46.01%	36.01%	85.76%	55.89%	34.50%	28.32%	56.19%	39.16%
3	32.35%	27.75%	87.07%	55.11%	33.03%	28.46%	53.43%	38.66%
)24	36.83%	33.05%	84.37%	56.82%	32.87%	27.20%	50.49%	36.01%
	81.36%	55.28%	97.44%	63.32%	49.86%	35.05%	67.01%	43.62%
	(35.35 ↑)	(18.85 ↑)	(<mark>8.93</mark> ↑)	(5.11 ↑)	(13.33 †)	(<mark>6.59</mark> ↑)	(10.82 ↑)	(4.46 ↑)
;	6.77%	18.18%	65.50%	47.55%	19.91%	18.60%	20.08%	18.69%
	33.11%	30.31%	<u>77.14%</u>	<u>52.32%</u>	<u>28.74%</u>	22.40%	32.33%	<u>24.19%</u>
1	<u>43.97%</u>	<u>35.01%</u>	72.97%	49.51%	28.53%	20.40%	<u>33.29%</u>	22.77%
2	36.06%	31.16%	74.54%	50.40%	26.07%	19.65%	31.10%	22.17%
	39.32%	31.32%	71.29%	47.30%	26.72%	19.78%	29.74%	21.28%
3	34.44%	27.16%	74.57%	47.23%	26.28%	20.36%	30.83%	22.63%
)24	31.81%	29.78%	69.96%	48.86%	25.26%	19.30%	27.42%	20.38%
	103.09%	66.18%	100.65%	64.96%	44.10%	28.29%	46.24%	29.36%
	(59.12 ↑)	(31.17 †)	(23.51 †)	(1 2.64 ↑)	(15.36 †)	(5.89 ↑)	(12.95 ↑)	(5.17 ↑)